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We have investigated the influence of a time-periodic and spatially homogeneous magnetic field on the linear
stability properties and on the nonlinear response of a ferrofluid layer heated from below and from above. A
competition between stabilizing thermal and viscous diffusion and destabilizing buoyancy and Kelvin forces
occurs. Floquet theory is used to determine the stability boundaries of the motionless conductive state for a
harmonic and subharmonic response. Full numerical simulations with a finite difference method were made to
obtain nonlinear convective states. The effect of low- and high-frequency modulation on the stability bound-
aries as well as on the nonlinear oscillations that may occur is investigated.
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I. INTRODUCTION

The spontaneous formation of spatial and temporal pat-
terns can be observed in many physical, chemical, and bio-
logical systems that are driven out of thermal equilibrium
�1�. If the driving—characterized by a control parameter—
exceeds a critical threshold a structured system state grows
out of an unstructured homogeneous state, thereby breaking
at least one symmetry of the former state.

A well known and extensively investigated hydrodynamic
pattern forming system is the Rayleigh-Bénard system �2� of
a horizontal fluid layer that is heated from below and cooled
from above. The control parameter is the dimensionless Ray-
leigh number Ra, which is a measure of the buoyancy force
Fb�g�T. g is the gravitational acceleration and �T the ap-
plied temperature difference across the layer. If Ra is above
the critical value Rac, the motionless fluid layer looses its
stability against small perturbations and convection starts in
the form of straight parallel rolls as they occur, e.g., in nar-
row channels with roll axes perpendicular to the long side
walls.

The effect of time-periodic forcing, i.e., Ra=Ra�t�, on
both the onset of convection and the convective response has
been investigated in some detail �3–6�. The forcing can be
realized by varying the temperature difference �T�t� or the
gravitational acceleration g�t�. For the latter the convection
cell has to oscillate, and the range of accessible amplitudes
and frequencies has its limitations in the experimental setup.
Considering magnetic fluids offers an alternative method to
investigate periodic forcing.

Magnetic fluids �ferrofluids� show a strong paramagnetic
behavior if exposed to an external magnetic field �7,8�. Their
magnetization depends on the fluid temperature, which
causes magnetization gradients if temperature gradients are
present. This leads to destabilizing Kelvin forces, the
strength of which is characterized by the dimensionless mag-
netic Rayleigh number N. Periodic forcing can be realized by
periodic modulation of the external magnetic field which re-
sults in a time-dependent magnetic Rayleigh number N�t�.
The system under consideration shows paradigmatically the
response of a pattern forming system when the driving is
periodically swept over the threshold.

The first theoretical investigation of the linear stability of
the quiescent ferrofluid layer in the presence of a spatially

homogeneous, stationary magnetic field was made by Finlay-
son �9�. Qualitative experimental validations of his results
were obtained by Schwab et al. �10�. Huang et al. �11� in-
vestigated the effect of a uniform oblique magnetic field and
a nonuniform magnetic field �12� on the linear stability prop-
erties. Kaloni et al. �13� considered the convective instability
problem taking the Brownian relaxation mechanism into ac-
count. In a subsequent paper they expanded their analysis to
alternating magnetic fields �14�. Aniss et al. �15� have also
studied the effect of a time-periodic magnetic field on the
linear stability properties, but only for low Prandtl number
fluids.

The present paper complements the linear stability con-
siderations of �14,15�. In addition, we show for the first time
nonlinear convective states of the full nonlinear governing
equations, investigating the effect of the modulation on the
nonlinear response. The paper is organized as follows: in
Sec. II we present the system, the boundary conditions and
the ground state. The linear stability analysis is performed in
Sec. III including the results for high- and low-frequency
modulation. The nonlinear convective states are presented in
Sec. IV. We close with the summary in Sec. V. Subharmonic
response is shortly discussed in the Appendix.

II. SYSTEM

We consider a laterally periodic ferrofluid layer in the
Rayleigh-Bénard setup. We apply a constant vertical tem-
perature gradient and a spatially homogeneous external mag-
netic field Hext normal to the fluid layer �see Fig. 1�. The
hydrodynamic field equations �Oberbeck-Boussinesq ap-
proximation� and the magnetostatic Maxwell equations read
�8,16–18�

� · u = 0 �2.1�

��t + u · ��u = − �p + ��2u + �g�Tez +
�0

�0
��M · ���H

�2.2�

��t + u · ���T = ��2�T �2.3�

� · �B = �0 � · ��H + �M� = 0 �2.4�
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� � �H = 0 → �	 = �H �2.5�

for the velocity field u=uex+wez of straight rolls with axes
oriented in the y direction, the deviations of the temperature
field �T=T−T0, the magnetic field �H=H−H0, and the fluid
magnetization �M=M�H ,T�−M0�H0 ,T0�. T0 denotes the
mean temperature of the fluid layer, H0 the magnetic field
inside the isothermal fluid layer with the temperature T0, and
M0 the associated magnetization of the fluid. Here, p is the
pressure field, � the kinematic viscosity �19�, � the thermal
expansion coefficient, g the gravitational acceleration, ez the
unit vector normal to the plates, �0 the magnetic field con-
stant, and � the thermal diffusivity. Furthermore, B is the
magnetic induction and 	 the magnetic potential.

We consider a magnetic field, which is normal to the
plates, uniform in space and harmonic in time. The internal
field for the isothermal fluid layer with temperature T0 is then

H0 = �HS + HM cos�
t��ez �2.6�

with HS being the time averaged, static contribution of the
driving, HM the modulation amplitude, and 
 the modulation
frequency.

For the magnetization M we assume the equilibrium mag-
netization

M�H,T� =
H

H
M�H,T� =

H

H
M�H/T� , �2.7�

since the vorticity of the convection is small and the period
of the magnetic field modulation is much larger than the
typical time scales of magnetization relaxation �Brown and
Néel�.

We expand �M in a Taylor series up to linear order in �H
and �T

�M = ��̄ 0 0

0 �̄ 0

0 0 �
��H − K�Tez. �2.8�

Here �̄=
M0

H0
is the chord susceptibility, �= � �M

�H �H0,T0
the tan-

gential susceptibility, and K=−� �M
�T �H0,T0

=
H0

T0
� the pyromag-

netic coefficient. In this work we consider small magnetic
fields so that �̄=� is equal to the initial susceptibility.

Using Eq. �2.8�, we nondimensionalize the Eqs.
�2.1�–�2.5� by scaling length by the height d of the layer,
time by the thermal diffusion time �th=d2 /�, temperature by
the applied temperature difference �T and the magnetic
potential by d �T

T0

�
1+� �H0�

� · u = 0 �2.9�

��t + u · ��u = − �p + Pr �2u + Pr Ra �Tez − Pr N�T�z � 	

�2.10�

��t + u · ���T = �2�T �2.11�

�2	 = �z�T . �2.12�

We get the following dimensionless parameters: the Prandtl
number Pr= �

� , the Rayleigh number

Ra =
�gd3

��
�T �2.13�

and the magnetic Rayleigh number

N = �0
�T2d2�2

T0
2��1 + ��

�HS + HM cos�
t��2. �2.14�

It is useful to define additionally the time-independent con-
trol parameters

NM = �0
�T2d2�2

T0
2��1 + ��

HM
2 , NS = �0

�T2d2�2

T0
2��1 + ��

HS.
2

�2.15�

We also use the reduced relative Rayleigh number

� =
Ra

Rac
0 − 1 �2.16�

with Rac
0 being the critical Rayleigh number in the absence

of magnetic fields.

A. Boundary conditions

We consider rigid and perfectly heat conducting plates so
that

�T�z=�1/2 = �
1

2
, w�z=�1/2 = 0 = u�z=�1/2. �2.17�

The continuity of the normal component of B and the tan-
gential component of H at the interface of the magnetic fluid
layer and the nonmagnetic plates implies

�z	̂m�z=�1/2 = � 	 �mk�
1 + �

	̂m	
z=�1/2

�
1

2
�m,0 �2.18�

with �m,0 being the Kronecker delta. Here 	̂m�z , t� denotes
the mth lateral Fourier coefficient of an expansion of the

magnetic potential 	�x ,z , t�=
m	̂m�z , t�eimkx with wave
number k. We refer to these realistic boundary conditions as
RBC.

z

x
y

λ

d

ext

∆T

H

FIG. 1. Schematic setup of the Rayleigh-Bénard system with
straight convection rolls with axes oriented in the y direction. A
constant vertical temperature gradient �T /d and a spatially homo-
geneous external magnetic field Hext normal to the fluid layer is
applied. The lateral periodicity length is �.

P. MATURA AND M. LÜCKE PHYSICAL REVIEW E 80, 026314 �2009�

026314-2



For an analytical treatment, we also consider free-slip
boundaries at the plates and the limit �→�

�T�z=�1/2 = �
1

2
, w�z=�1/2 = 0 = �zu�z=�1/2,

�z	�z=�1/2 = �
1

2
. �2.19�

We refer to these idealized boundary conditions as IBC.

B. Conductive state

The quiescent, conductive solution of Eqs. �2.9�–�2.12�
reads

ucond = 0, �Tcond = − z, 	cond = −
1

2
z2. �2.20�

The time dependence of the magnetic potential 	cond for pe-
riodic modulation is hidden in �H0�t�� used in the scaling.

III. LINEAR STABILITY ANALYSIS

For IBC we expand the deviations w, �=�T−�Tcond and
�=	−	cond from the conductive state of the vertical veloc-
ity, the temperature field and the magnetic potential, respec-
tively, as follows:

�w,�,�� = 

m,n

�wmn�t�,�mn�t�,�mn�t��eimkxcs�n�z� .

�3.1�

In the lateral direction we use Fourier modes with periodicity
length �=2� /k, k being the associated wave number. In the
vertical direction an orthogonal set cs�n�z� matching the
boundary conditions Eq. �2.19� is used. For the w and the �
field, cs is an abbreviation for the function cosine for n odd
and sine for n even, respectively. For the � field, the role of
cosine and sine is interchanged.

Linearizing the Eqs. �2.9�–�2.12� for the deviations, we
obtain a system of decoupled second-order equations for the
amplitudes �mn�t�

�̈ + ��̇ = −
�

��
V��� �3.2�

with

V��� = −
1

2
Pr q̃4��̂ + N̂S + 2�N̂SN̂M cos�
t� + N̂M cos2�
t�� .

�3.3�

Here we have omitted the indices mn and introduced

q̃2 = n2�2 + m2k2, � = q̃2�1 + Pr�, Rastab =
q̃6

m2k2 ,

�3.4�

Nstab =
q̃8

m4k4 , �̂ =
Ra

Rastab
− 1, N̂M =

NM

Nstab
, N̂S =

NS

Nstab
.

�3.5�

The conductive solution is linearly stable, if none of the am-
plitudes �mn�t� is able to grow in time, otherwise it is un-
stable. The growth behavior of the amplitudes depends on
the details of the potential V Eq. �3.3� and on the damping �.
First we briefly review the results for time independent driv-
ing �Sec. III A�, then we proceed with the results for time
dependent forcing �Sec. III B�.

A. Stationary magnetic fields (HM=0)

For stationary magnetic fields, the stability boundary of
the conductive state against a perturbation with amplitude

�mn is given by the condition �̂+ N̂S=0 for which the curva-
ture of the potential V Eq. �3.3� becomes zero. The critical
Rayleigh number as a function of the magnetic Rayleigh
number NS=N �or vice versa� is given by the minimum of
the marginal stability curve Rastab�k ;N� �or Nstab�k ;Ra�, re-
spectively� with respect to the wave number k. Without mag-
netic fields, i.e., NS=0, the critical values are Rac

0=27�4 /4,
kc

0=� /�2 for IBC, and Rac
0�1707.762, kc

0�3.116 for RBC.
Applying a static magnetic field, i.e., NS�0, the curvature of
the potential is reduced and the critical Rayleigh number
decreases with increasing NS, whereas the critical wave num-
ber increases �9,20�.

B. Modulated magnetic fields (HMÅ0)

If the applied magnetic field is periodically modulated,
i.e., HM �0, the potential V Eq. �3.3� is periodic, too, and the
criteria for determining the stability boundary can be deter-
mined with the help of the Floquet theory �21�. According to
the Floquet theory the general solution of Eq. �3.2� reads

��t� = Ae��−�/2�tP�t� + Be�−�−�/2�tP�− t� �3.6�

where A and B are determined by the initial conditions. P�t�
is a periodic function with the same period as the potential
V�t� Eq. �3.3�, and �=�r+ i�i is the complex Floquet expo-
nent, which is a function of the system parameters and of the
considered perturbation. After eliminating the damping term

��̇ in Eq. �3.2� via the substitution

��t� = y�t�e−t�/2, �3.7�

we integrated the resulting differential equation for y numeri-
cally, using a Runge-Kutta scheme, and calculated � follow-
ing the method described in �21�.

As a result, we get the Floquet exponent as a function of,
e.g., the control parameters � and NM �and fixed remaining
parameters�. The regions of growth of the variable y�t� have
the form of the well-known Mathieu tongues. The latter are
connected with the � axis at points �n

� so that resonant driving
is possible for an infinitesimal modulation amplitude
��NM�, if the eigenfrequency ���� of the unmodulated sys-
tem, i.e., for NM =0, is an integer multiple of half of the
modulation frequency. However, the stability boundaries for
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the physically relevant amplitude ��t� belonging to subhar-
monic or harmonic resonance are detached from the � axis,
because the growth rate of y�t� is reduced by the exponential
e−t�/2.

By means of a perturbation analysis, an upper boundary
for the connection points �n

� for y and consequential a bound-
ary for the regions of resonance for � can be determined
analytically

�n
� � −

�1 + Pr�2

4 Pr
. �3.8�

For large Prandtl numbers �n
� is proportional to −Pr, indicat-

ing that subharmonic response can only be achieved for large
negative �. Because large Prandtl numbers are typical for
ferrofluids �see for example Table 1 in �13��, harmonic re-
sponse is to be expected in experiments.

In the following, we discuss the results of the linear sta-
bility analysis in detail for a Prandtl number of Pr=50, which
is used throughout the rest of this paper. In the Appendix, we
consider the case of a small Prandtl number �Pr=5� to dem-
onstrate the possibility of subharmonic response appearing
already for relatively small negative �.

C. Results

Figure 2�a� shows the linear stability boundaries of the
conductive state in the �-NM plane for a Prandtl number of
Pr=50. The thin black �blue� line indicates the critical re-
duced relative Rayleigh number �=Ra /Rac

0−1 as a function
of the magnetic Rayleigh number NM in the case of the low-
�high-�frequency limit 
→0 �
→�� of the modulation.
The stability boundaries for intermediate frequencies lie in
between these limiting cases. Note that for ��−1 the layer is
heated from above and thus it is thermally stabilized. By
decreasing the modulation frequency the curves shift toward
the black line, i.e., the conductive solution gets stabilized in
that case. The corresponding critical wave number kc �inset

�b�� starts at kc
0 in the absence of magnetic fields and in-

creases monotonically with growing magnetic field. The
imaginary part of the Floquet exponent is zero at the stability
boundaries of Fig. 2, yielding harmonic response. In the
high-frequency limit, solely the time average of N�t� affects
the stability behavior. Thus, in this limit the stability bound-
ary coincides with the stationary stability boundary when
one uses the mean magnetic Rayleigh number

N�t�� = NM�1 + cos�
t��2� = 1.5NM �3.9�

as the control parameter.
To compare with the numerical simulation of the full non-

linear equations, we included in Fig. 2 the stability bound-
aries only for the discrete wave numbers that are compatible
with the lateral periodicity �=2� /kc

0 of our simulation cell.
In the parameter range shown in Fig. 2 only perturbations
with wave numbers kc

0 �full thick lines� and 2kc
0 �dashed thick

lines� are able to grow.

IV. NONLINEAR CONVECTION

In this section we discuss relaxed nonlinear convective
states in the form of straight parallel rolls. Thereto the field
equations were solved in a vertical cross section through the
convection rolls perpendicular to their axes, thus ignoring
effects that come from field variations along the roll axes.
We used a finite difference method, that is based on the
MAC method �22,23�. First we discuss results for stationary
driving �Sec. IV A�, then for periodic modulation of the
magnetic field �Sec. IV B�. The simulations were made for
the realistic RBC case.

A. Stationary magnetic fields (HM=0)

The Figs. 3 and 4 show bifurcation diagrams of the Nus-
selt number Nu–1 for the unmodulated case: �i� in Fig. 3 as
a function of the reduced relative Rayleigh number � for the
fixed magnetic Rayleigh numbers N=0, 1000, 5000, 10000,
and �ii� in Fig. 4�b� as a function of N for fixed �=0, −1.8.
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FIG. 2. �Color online� Stability boundaries of the quiescent fluid
for high �blue� and low �black� frequency modulation, respectively.
Thin lines in �a� show the critical reduced Rayleigh number �
=Ra /Rac

0−1 as a function of NM for IBC and thick lines refer to the
marginal stability boundaries for k=kc

0 �full lines� and 2kc
0 �dashed

lines�, respectively, both for harmonic response. The inset �b� shows
the critical �thin line� and the marginal �thick lines� wave number as
a function of NM.
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FIG. 3. Bifurcation of the Nusselt number Nu–1 for RBC as a
function of the relative reduced Rayleigh number �=Ra /Rac

0−1 for
stationary magnetic fields. Their strength is labeled by the magnetic
Rayleigh numbers from N=0 �no magnetic field� up to N=10000.
Their wave number is in each case the critical one, kc�N�.
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We will first discuss the case �i�. Here, the periodicity of
the simulation cell has been adapted to the associated critical
wavelength kc=kc�N�. It increases monotonically with the
magnetic Rayleigh number N, starting with kc�0��3.12 in
the absence of magnetic fields, and being �4.79 for N
=10000. The bifurcation threshold is shifted to lower � val-
ues when increasing N. Below �=−1, the fluid is heated from
above and cooled from below. But the thermally induced
density stratification of the fluid layer can be outbalanced by
the Kelvin force, leading to convection. Note that the initial
slope of the forward bifurcating Nusselt number curve de-
creases with increasing N. The initial slopes are in good
agreement with results from a weakly nonlinear analysis
�20�.

In case �ii� the periodicity of the simulation cell has been
fixed to �=2. The corresponding wave number is k=��kc

0.
Figure 4�a� shows the stationary bifurcation thresholds for
perturbations with the wave number k=� �blue solid line�
and k=2� �blue dashed line�. In Fig. 4�b� the associated
bifurcations of Nu–1 are shown as a function of the static
magnetic Rayleigh number N for �=0 �the two left curves�
and �=−1.8 �the two right curves�. Red �black� squares mark
the solution branch bifurcating at the �k=�� threshold
��k=2�� threshold�. These solutions are used later on as a

basis for comparison with the response to low-frequency
modulation.

B. Modulated magnetic fields (HMÅ0)

In this section we consider the response to periodic modu-
lation of the magnetic field. We investigate the temporal os-
cillations of the Nusselt number and of the vertical velocity
of relaxed nonlinear convective states.

We deal with the case HS=HM �0 for the parameter com-
binations ��=0, NM =1747� and ��=−1.8, NM =3494�. The
interval over which the magnetic Rayleigh number N�t� var-
ies is illustrated in Fig. 4�a� by the black double arrows. With
respect to the stationary bifurcation thresholds, the magnetic
control parameter N�t�=NM�1+cos�
t��2 is always �par-
tially� in the unstable region for �=0 ��=−1.8�.

1. Case �=0

We first discuss the case �=0. Figure 5�a� shows the os-
cillations of the control parameter N�t�. The stationary bifur-
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FIG. 4. �Color online� Blue lines in �a� show stationary stability
boundaries of the conductive state against the growth of �k=�� and
�k=2�� perturbations in the �-N plane for RBC. The black arrow
at �=0 ��=−1.8� marks the interval over which N�t�=NM

�1+cos�
t��2 varies for NM =1747 �NM =3494�. The bifurcation
branches of the Nusselt number Nu–1 for stationary magnetic fields
as a function of the magnetic Rayleigh number N are show for later
reference in �b�. The leftmost �rightmost� curves belong to k=�
�full line with a red square� and to k=2� �dashed line with a black
square�, respectively, at �=0 ��=−1.8�, as indicated by the black
dotted lines.
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FIG. 5. �Color� Temporal oscillations of �a� the control param-
eter N�t�=NM�1+cos�
t��2 �Nmax=4NM =6988, �=0�, �b� the
Nusselt number Nu–1, and �c� the vertical velocity w as a function
of the reduced time t /T with T=2� /
 being the modulation period.
w is evaluated at midheight between two adjacent rolls. In the leg-
end the respective modulation frequency is given as the multiple of
the reference frequency 
R explained in the text. The red squares
show the stationary k=� response to stationary magnetic fields with
magnetic Rayleigh number N given by the actual value of N�t� in
�a�. The dashed red lines show the order parameter for stationary
driving with the mean magnetic Rayleigh number N�t��=1.5NM.
The full �dashed� blue line in �a� marks the stationary bifurcation
threshold for k=� �k=2��.
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cation thresholds of N for k=� �solid blue line� and k=2�
�dashed blue line� are included for the sake of reference as
well. Figure 5�b� shows the Nusselt number Nu–1, and �c�
the vertical velocity w as a function of the reduced time t /T
with T=2� /
 being the associated modulation period. w is
evaluated at midheight between two adjacent rolls. The tem-
poral oscillations are shown for three different frequencies,
namely, 20
R �blue curves�, 
R �black curves�, and 0.01
R
�green curves�. Here 
R�2� /�vis is the reference frequency
corresponding approximately to one viscous diffusion time
�vis=d2 /�. For comparison, the constant values for stationary
driving with the mean N�t��=1.5NM as control parameter
�red dashed lines�, as well as the values for the stationary
solution branch that bifurcates at the stability threshold for
k=� �red squares� are included.

The results are as follows: for the modulation with the
high frequency 20
R, the dynamics of the convection is
nearly averaged, e.g., the oscillation amplitude of the Nusselt
number is small compared to its mean value �b�. The modu-
lation amplitude of the velocity field is barely �12% of its
time mean �c�. A phase shift between the maximum of N and
the maximum of the velocity w or the Nusselt number Nu
occurs: the latter ones are temporally delayed to the former
because of the inertia of the fluid resisting the fast changing
accelerating Kelvin force leading to this time lag. Consis-
tently the phase shift decreases with decreasing frequency.
That is best seen for the velocity profiles in �c�. Thereby the
oscillation amplitudes are increasing and the oscillation pro-
files become more anharmonic. The lower the modulation
frequency, the closer the oscillation profiles get to the curve
displayed by the red squares. Deviations just persist in the
vicinity of the bifurcation threshold, because the dynamics
become infinitely slow there.

2. Heating from above

We now discuss the case �=−1.8. The high-frequency be-
havior is shown in Fig. 6 and the low frequency one in Fig.
7. The setup of these figures is the same as in Fig. 5 �cf. last
paragraph�. In contrast to the previous case of �=0, the mag-
netic Rayleigh number now crosses periodically the station-
ary bifurcation threshold �cf. the lower double arrow in Fig.
4�. This affects particularly the low frequency behavior.

High-frequency behavior—The high-frequency behavior
is basically the same as for �=0, i.e., the oscillation ampli-
tude decreases and the phase shift increases with increasing
modulation frequency, approaching the respective values for
Nu and w for stationary driving with the mean N�t��
=1.5NM as control parameter �red dashed lines�. But in the
present case two exceptions are worth mentioning: �i� the
mean of, e.g., the Nusselt number increases and �ii� the sense
of rotation of the convection rolls changes periodically for
frequencies lower than �10
R. Here, the increase in the
mean Nusselt number is due to the shift of the stability
boundary �cf. Fig. 2�a��, leading to a larger distance from the
bifurcation threshold for increasing modulation frequency.
On the other hand, the change of the sense of rotation is due
to the restoring thermal buoyancy force �heating from above�
that causes the stabilization of the conductive solution. And
the inertia of the fluid leads to an overshooting.

Low-frequency behavior—The low-frequency behavior is
shown in Fig. 7 for 
 /
R=0.015 �black�, 5 ·10−3 �green�,
1 ·10−3 �magenta�, and 1·10−4 �blue�. For comparison, the
values for the stationary solution branches bifurcating at the
stability thresholds for k=� �red squares�, and for k=2�
�black squares�, respectively, are included. The lower the
modulation frequency, the larger the oscillation amplitudes,
thereby approaching the limiting value given by the respec-
tive stationary solution curve. For intermediate frequencies,
here shown for 
 /
R=5·10−3 �green�, and 1·10−3 �ma-
genta�, a fast growth of the amplitude followed by a pro-
nounced overshooting can be observed, relaxing just simi-
larly fast to values close to the stationary ones belonging to
the curve bifurcating at the �k=2�� threshold �black
squares�. For low enough frequencies, here demonstrated for
the case 
 /
R=1·10−4 �blue�, the time interval, where N�t�
is overcritical with respect to the �k=��-threshold, but still
undercritical with respect to the �k=2��-threshold, suffices
for a �k=�� perturbation to become large enough that a
�k=2�� perturbation, starting to grow later, cannot compete.
Hence, the oscillation profiles for very low frequencies ap-
proach the stationary k=� curve �red squares�.
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FIG. 6. �Color� Temporal oscillations of �a� the control param-
eter N�t�=NM�1+cos�
t��2 �Nmax=4NM =13976, �=−1.8�, �b� the
Nusselt number Nu–1, and �c� the vertical velocity w as a function
of the reduced time t /T with T=2� /
 being the modulation period.
w is evaluated at midheight between two adjacent rolls. In the leg-
end the respective modulation frequency is given as the multiple of
the reference frequency 
R. The dashed red lines show the order
parameters for stationary driving with the mean magnetic Rayleigh
number N�t��=1.5NM. Note, that for frequencies 
�10
R the
sense of rotation changes. The full �dashed� blue line in �a� marks
the stationary bifurcation threshold for k=� �k=2��.

P. MATURA AND M. LÜCKE PHYSICAL REVIEW E 80, 026314 �2009�

026314-6



3. Effect of noise for small Ω

The results obtained by the numerical simulations for
low-frequency modulation has to be taken with care, because
numerical noise prevents the field amplitudes to become as
small as they should do in the undercritical phase of driving.
Instead, the noise level, depending on the numerical accu-
racy, provides a lower bound for the convective field ampli-
tudes below which they cannot decrease. This is illustrated
by Fig. 8. We have chosen the temporal evolution of the
dominant lateral Fourier coefficients ŵ1 �full line� and ŵ2
�dashed line� of the lateral velocity profile of w in the middle
of the layer as characteristics to demonstrate the influence of
the numerical noise on the stability behavior and on the pat-
tern selection. For 
 /
R=0.015 �black curves in �b��, ŵ1 is
dominant during the whole period, while ŵ2 is always sev-
eral orders of magnitude smaller. Hence, ŵ2 is not influenc-
ing the solution, although its value cannot fall below �10−16

in the undercritical phase of driving due to numerical noise.
The situation changes already for a slightly smaller modula-
tion frequency: For 
 /
R=0.01 �red curves in �b��, ŵ2 can
grow to much higher values thereby influencing the structure

significantly. In fact, the resulting oscillations are not strictly
periodic anymore. The maximum value of ŵ2 differs from
one cycle to another, because it starts growing out of a noise
induced random value in the overcritical phase of driving.
Increasing the modulation period further, here shown for

 /
R=0.005 and 0.0001, both ŵ1 and ŵ2 are noise influ-
enced. For 
 /
R=0.005 �green �dark gray� curve in �c��, ŵ2

becomes the dominant mode, while for 
 /
R=0.0001 �blue
�light gray� curve in �c��, ŵ1 dominates.

The presence of noise consequently leads to the fact,
that—strictly speaking—convection appears always pro-
vided that �i� the stationary bifurcation threshold is crossed
during one cycle, and �ii� the modulation period is large
enough, depending on the magnitude of the noise level. In
fact, this is not really a restriction, because in experiments
perturbations, that are orders of magnitudes larger than the
numerical noise in the simulations, are always present. How-
ever, one can include the perturbations that characterize the
specific experimental situation also in the numerical simula-
tions in order to obtain results that are suitable for comparing
with these experiments.
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FIG. 7. �Color� Temporal oscillations of �a� the control param-
eter N�t�=NM�1+cos�
t��2 �Nmax=4NM =13976, �=−1.8�, �b� the
Nusselt number Nu–1, and �c� the vertical velocity w as a function
of the reduced time t /T with T=2� /
 being the modulation period.
w is evaluated at midheight between two adjacent rolls. In the leg-
end the respective modulation frequency is given as the multiple of
the reference frequency 
R. The red �black� squares show the sta-
tionary k=� �k=2�� response to stationary magnetic fields with
magnetic Rayleigh number N given by the actual value of N�t� in
�a�. The full �dashed� blue line in �a� marks the stationary bifurca-
tion threshold for k=� �k=2��.
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FIG. 8. �Color online� Temporal oscillations of �a� the control
parameter N�t�=NM�1+cos�
t��2 �Nmax=4NM =13976, �=−1.8�,
and �b�, �c� the first two Fourier modes ŵ1 and ŵ2 of the lateral
velocity profile w at midheight as a function of the reduced time t /T
with T=2� /
 being the associated modulation period. In the leg-
end the respective modulation frequency is given as the multiple of
the reference frequency 
R. The Fourier modes cannot fall below
�10−16 in the undercritical phase of driving �concerning to the sta-
tionary stability boundaries, see �a�� due to numerical noise.
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V. SUMMARY

We have investigated the linear stability and the nonlinear
convective properties of a ferrofluid in the Rayleigh-Bénard
geometry, exposed to a constant vertical temperature gradient
and a temporal periodic but spatially homogeneous external
magnetic field normal to the fluid layer. The ferrofluid is
regarded as a one component magnetizable fluid. Its magne-
tization is equilibrated at every time instant and it is only a
function of the magnetic field and of the temperature. The
magnetic driving enters the momentum balance equation via
the Kelvin force density, which is periodic in our case. It
turns out that the linear stability properties of the quiescent
conductive state are captured by the growth behavior of para-
metrically driven harmonic oscillators. The stability of the
conductive state and particularly the type of response, which
can be harmonic or subharmonic, is determined by the sys-
tem parameters. The stability boundary of the conductive
state in the high-frequency limit coincides with the stationary
stability boundary if one uses a mean magnetic Rayleigh
number. The stability boundary for low-frequency modula-
tion is shifted in a way that the conductive state gets stabi-
lized. We found, that subharmonic response is not typical for
ferrofluids because of their high Prandtl numbers. But in
low-Prandtl number simulations we found nonlinear relaxed
subharmonic convective states as predicted by the linear
analysis.

The nonlinear response has been investigated for heating
from below and from above for a large span of modulation
frequencies. For high-frequency modulation the dynamics is
nearly averaged and the order parameters approach the val-
ues which they have for a driving with the corresponding
mean magnetic Rayleigh number. In the case of heating from
above, a change in the sense of rotation of the convection
rolls has been observed that is due to the stabilizing thermal
restoring force and to the inertia of the fluid, leading to an
overshooting. We have seen that for low-frequency modula-
tion the numerical noise can influence the pattern selection.
This is the case, if the convection amplitudes cannot go be-
low the noise level, depending on the numerical accuracy, in
the undercritical phase of driving. The simulations showed
that for very low modulation frequencies the oscillation pro-
files approach the stationary curves.
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APPENDIX: SUBHARMONIC RESPONSE

Although large Prandtl numbers are typical for ferrofluids,
we show here also a stability map for a small Prandtl number
of Pr=5 and 
=0.2
R to demonstrate the possibility of sub-
harmonic response appearing for relatively small negative �
in that case. Thereto, we considered the growth behavior of
lateral periodic perturbations of the temperature deviation �
with periodicity length �=2� /kc

0, kc
0=� /�2 being the critical

wave number for IBC in the absence of a magnetic field. The
stability boundaries of the conductive state against the

growth of different � modes are shown in Fig. 9 in the plane
spanned by the control parameters � and NM. For the pre-
sented parameter range, only a few modes get unstable—�11
�solid line�, �21 �dashed line�, and �31 �dotted line�–, starting
to grow harmonically �subharmonically� beyond the respec-
tive black �red� curve in the unstable region. The type of
response is determined by the associated imaginary part of
the Floquet exponent, which is 0 �� /T� by crossing the black
�red� curves. The red arrow marks the connection point �1

�

��−1.8, see Eq. �3.8�� of the domain of first subharmonic
resonance of y associated to the �21 mode.

To demonstrate subharmonic resonance, we have chosen
an appropriate parameter combination for RBC: �=−5.5 and
NM =13000. Figure 10 shows the subharmonic response of a
relaxed nonlinear state by displaying the temporal oscilla-
tions of the vertical velocity w �black line, �b�� and the tem-
perature deviation �=�T−�Tcond �red line, �b�� at midheight
between two adjacent rolls for two periods of modulation.
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FIG. 9. �Color online� Stability boundaries of the conductive
state against the growth of �m1 modes in the �-NM plane for Pr=5
and 
=0.2
R. Solid, dashed and dotted lines correspond to m=1,
m=2 and m=3, respectively. Black �red� lines are related to har-
monic �subharmonic� response. The red arrow marks �1

� of the first
subharmonic response of y �see Eq. �3.7�� associated to the �21

mode.
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FIG. 10. �Color online� Subharmonic response displayed by
temporal oscillations of �b� the vertical velocity w �black line� and
the temperature deviation �=�T−�Tcond �red line� at midheight be-
tween two adjacent rolls for two periods of the modulation. The
magnetic Rayleigh number N�t�=NM�1+cos�
t��2 is shown in �a�.
Parameters are Pr=5, �=−5.5, NM =13000, and 
=0.2
R.
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The magnetic Rayleigh number N�t�=NM�1+cos�
t��2 is
shown in �a�. Therein, the blue solid �dashed� line marks the
stationary bifurcation threshold for k=� �k=2��. There oc-
curs a phase shift between the maximum of the driving N,
e.g., at t /T=1 �t /T=0�, and the maxima �minima� of the
velocity w and the temperature deviation �: the latter ones
are temporally delayed to the former. For the subharmonic
response, that leads to f�t�= f�t+2T� with f representing an

arbitrary field variable, one observes the following additional
temporal symmetry

f�z,t� = � f�− z,t + T� . �A1�

Here the minus �plus� sign holds for f =�T and w �f =u and
	�. This symmetry can easily be seen by comparing, e.g., the
absolute values of the field extrema in Fig. 10�b�.
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